Ketenacetale als Dienophile:

Reaktivität und Regiospezifität bei (4+2)-Cycloadditionen mit inversem Elektronenbedarf

K. Müller ¹⁾ und J. Sauer *

Institut für Organische Chemie der Universität Regensburg, D-8400 Regensburg, Universitätsstr. 31 (West Germany)

Abstract: Ketene acetales 3a-3e differ in reactivity by 5-6 powers of ten in the reaction with monoary1 tetrazines 1a-1e. While 3a-3d yield "ortho-adducts" 4 almost exclusively, the ketene-N,N-acetale 3e gives both regioisomers 4 and 5, the isomer ratio is depending on the polarity of the solvent used.

Orientierungsphänomene bei (4+2)-Cycloadditionen, die der $HOMO_{Dien}$ -LUMO $_{Phil}$ -Kontrolle unterliegen, lassen sich mit Hilfe der FMO-Theorie gut verstehen $^2)$. Für DIELS-ALDER-Reaktionen mit inversem Elektronenbedarf sind die Voraussagen nicht so eindeutig $^3)$. Anknüpfend an frühere Untersuchungen $^4)$ legen wir experimentelle Daten vor, die zeigen, daß (4+2)-Cycloadditionen von unsymmetrischen 1,2,4,5-Tetrazinen und 1,2,4-Triazinen mit Ketenacetalen eindeutigen Orientierungsregeln folgen; Keten-N,N-acetal $\underline{3e}$ zeigt dabei deutlich Abweichungen und einen unerwartet hohen Lösungsmitteleinfluß auf die Regiochemie der Reaktion.

Wir haben die unsymmetrischen Dien-Komponenten $\underline{1}$ und $\underline{2}$ mit den unsymmetrischen Ketenacetalen $\underline{3}$ umgesetzt. Die Reaktionen lassen sich quantitativ mit Hilfe der HPLC sehr gut verfolgen 1); die Isomerenverhältnisse der gebildeten Produkte $\underline{4:5}$ bzw. $\underline{6:7}$ können mit der gleichen Analysentechnik auf \pm 1-2% durch Vergleich mit Eichgemischen der reinen Isomeren bestimmt werden. Die Ausbeuten an $\underline{4}$ + $\underline{5}$ bzw. $\underline{6}$ + $\underline{7}$ liegen in allen Fällen hoch. Die Ergebnisse lassen sich wie folgt zusammenfassen:

- Die Ketenacetale <u>3a-3d</u> liefern bei der Umsetzung mit <u>1a-1e</u> in allen Fällen in hohen Gesamtausbeuten praktisch ausschließlich die "ortho"-Isomeren <u>4a-4c</u>. Allenfalls ein Gehalt von < 0.2-0.5% an "meta"-Isomeren <u>5</u> kann durch HPLC nachgewiesen werden. Eine Lösungsmittelvariation hat keinen außerhalb der Fehlergrenze der Analytik liegenden Effekt.
- 2. Keten-N,N-acetal <u>3e</u> nimmt eine Sonderstellung ein; es bilden sich <u>beide</u> möglichen Produkte <u>4</u> und <u>5</u>, das Verhältnis <u>4c:5c</u> ist bei Umsetzung mit den Tetrazinen stark vom Solvens abhängig, wie in Tab. 1 für die Reaktion mit <u>1c</u> gezeigt ist. Zunehmende Polarität des Solvens begünstigt das meta-Isomere <u>5c</u>; allerdings findet man entgegen der Erwartung in Ethanol praktisch ausschließlich das ortho-Isomere 4c.
- 3. Bei Umsetzung der Triazine 2 findet man im Prinzip den gleichen Effekt (Tab. 2); die Reaktion mit Keten-N,N-acetal liefert wieder relativ stark vom Solvens abhängige Produktgemische 6:7. Tab. 2 zeigt dies für die Reaktion von 2b; der Polaritätseffekt ist der gleiche, auch der spezielle "Alkohol-Effekt" findet sich wieder. Für die Reaktion in CH₂Cl₂ wurde gesichert,

$$\begin{array}{c|c} CO_2CH_3 \\ N & N \\ N & N \\ R^5 & R^6 \end{array}$$

	S
<u>a</u>	m-CF ₃
<u>b</u>	p-C1
<u>c</u>	Н
<u>d</u>	p-OMe
<u>e</u>	p-N(Me) ₂

	R ⁵	R ⁶
<u>a</u>	Н	Н
<u>b</u>	с ₆ н ₅	Н
<u>c</u>	Н	С ₆ Н ₅
<u>d</u>	с ₆ н ₅	с ₆ н ₅
<u>e</u>	со ₂ сн ₃	^{CO} 2 ^{CH} 3

	Х	Υ
<u>a</u>	SMe	SMe
<u>b</u>	0Et	0Et
<u>c</u>	SMe	N(Me) ₂
<u>d</u>	OMe/OEt	N(Me) ₂
<u>e</u>	N(Me) ₂	N(Me) ₂

Schlüssel für
$$4/5$$

Y

a SMe
b OMe/OEt
c N(Me)₂

$$\begin{array}{c|c}
CO_2CH_3\\
N\\
N\\
R^5\\
R^6\\
\underline{6}\\
\end{array}$$

N(CH₃)₂

$$H_2C = C \frac{N(CH_3)_2}{N(CH_3)_2} / 30^{\circ}C$$

1. Addition

Ç ₆ H ₅		1
N (CH ₃) ₂	+	N=
N \\		Ň.
i.		

Solvens	ortho	meta
C₂H₅OH	99	1
Ср-сн₃	42	5 8
H	41	5 9
CH ₃ -CO ₂ C ₂ H ₅	19	8 1
\bigcirc	12	8.8
CH ₂ Cl ₂	6	94
CH₃CN	6	94

Tab. 1:

Solvenseinfluß auf die Isomerenverteilung 4c : 5c für die Reaktion von 1c mit 3e.

Tab. 2: Solvenseinfluß auf die Isomerenverteilung 6: 7 für die Reaktion von 2b mit 3e.

Solvens	ortho	meta	
CH₃OH	100	0	
C ₆ H ₁₂	99	1	
С сн₃	94	6	
\bigcirc	92	8	
CH ₂ Cl ₂ (17-98%)	39±2	61 ± 2	
HC-N(CH ₃) ₂ U O	37	63	
CH ₃ CN	37	63	

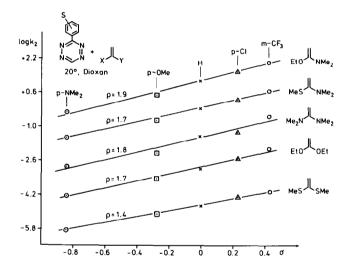


Abb. 1: HAMMETT-Plot für die Reaktion von Ketenacetalen 3 mit Tetrazinen 1 bei 20 o in Dioxan.

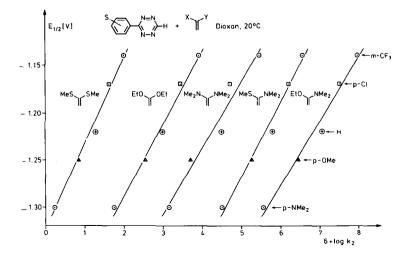


Abb. 2: Auftragung vom 6 + 1g k₂ für die Reaktion von Ketenacetalen 3 mit Tetrazinen 1 bei 20 in Dioxan gegen die Halbstufenreduktionspotentiale der Tetrazine 1.

- daß es sich um eine kinetisch kontrollierte Reaktion handelt. Mit höherem Substitutionsgrad der Triazine sinkt der Einfluß des Solvens auf die Zusammensetzung der Produktgemische 6/7.
- 4. Die kinetischen Untersuchungen zeigen einen sehr großen Unterschied in der Keten-Reaktivität. Mit Ausnahme des Keten-N,N-acetals folgt die Reaktivitätssequenz den HOMO-Energien der Dienophile 5). Der inverse Charakter der (4+2)-Cycloaddition wird auch durch die Substituentenabhängigkeit im Dien mit ρ -Werten zwischen 1.4-1.9 dokumentiert (Abb. 1). Die Parallelität der Geraden in Dioxan als Solvens spricht für einen gemeinsamen Mechanismus aller Ketenacetale in diesem Solvens. In Acetonitril zeigt die Umsetzung mit Keten-N,N-acetal bei 20 $^{\rm O}$ C dagegen einen deutlich erhöhten ρ -Wert von + 2.8.
- 5. Die RG-Konstanten der Cycloadditionen weisen eine lineare Beziehung zwischen den logk-Werten und den Halbstufen-Reduktionspotentialen der Tetrazine ⁶ auf (s. Abb. 2), wie bereits für eine Reihe anderer Beispiele publiziert wurde ^{7,8}.
- 6. Der Lösungsmitteleinfluß auf die Reaktionsgeschwindigkeit ist für Keten-S,S-, -0,0- und 0,N- acetal klein (Faktor 5-8 zwischen Dioxan und Nitrobenzol bzw. Acetonitril). Keten-N,N-acetal dagegen weist bei Umsetzung mit $\underline{1c}$ eine deutlich höhere Solvensabhängigkeit der Reaktionsgeschwindigkeit auf ($k_{Acetonitril}$: $k_{Cyclohexan}$ = 1560). Der stärkere Einfluß des polaren Acetonitrils spricht in übereinstimmung mit dem erhöhten ρ -Wert für einen polareren übergangszustand der Cycloaddition von 3e.
- 7. Die Aktivierungsentropien ΔS^{\dagger} liegen in allen untersuchten Fällen bei stark negativen Werten (-23 bis -50 e.u.).

Es ist nicht auszuschließen, daß im Falle des Keten-N,N-acetals,insbesondere in polaren Lösungsmitteln,die Reaktion über eine Einelektronenübertragung eingeleitet wird; das N,N-Acetal besitzt die geringste Ionisierungsenergie der ganzen Serie 3.

Dem Fonds der Chemischen Industrie und der BASF AG sei für großzügige Unterstützung mit Sachmitteln und Chemikalien bestens gedankt.

Literatur

- 1) Dissertation K. Müller, Universität Regensburg 1983.
- 2) Ausführliche Literaturübersicht: J. Sauer und R. Sustmann, Angew. Chem. 92, 773 (1980).
- 3) K.N. Houk, Acc. Chem. Res. 8, 361 [1975]; K.N. Houk, J. Am. Chem. Soc. 95, 4o92 [1973].
- 4) B. Burg, W. Dittmar, H. Reim, A. Steigel und J. Sauer, Tetrahedron Lett. 1975, 2897.
- 5) H. Bock, G. Wagner, K. Wittel, J. Sauer und D. Seebach, Chem. Ber. 107, 1869 (1974).
- 6) Herrn Dozent Dr. T. Troll sei für diese Messungen herzlich gedankt.
- J. Balcar, G. Chrisam, F.X. Huber und J. Sauer, Tetrahedron Lett. 1983, 1481.
- 8) S. auch G. Desimoni, P.P. Righetti, E. Selva, G. Tacconi, Tetrahedron 33, 2829 [1977].

(Received in Germany 26 March 1984)